Skip to the content.

Airo Quick Reference Guide

🎯 Project Overview

Airo = On-device AI + RAG + Function Calling for PDF/image/audio processing

Platforms: Android (Pixel 9), iOS (iPhone 13 Pro Max), Chrome (Web)

Core Functions:

  1. fill_form() - Extract & populate healthcare/diet forms
  2. schedule_notifications() - Create recurring reminders
  3. split_bill() - Extract bills & compute expense splits

📊 Success Metrics

Metric Target
Offline Success 90%
Latency <3s per PDF
Accuracy (F1) ≥0.9
Battery <5% per workflow
Footprint <1.2GB

🏗️ Architecture at a Glance

Flutter UI
    ↓ (Platform Channels)
Android/iOS/Web Native Layer
    ↓
AI Edge SDK (Gemma 1B int4)
    ↓
Local Storage (SQLCipher + HNSW)

📋 Phase Breakdown

Phase Duration What Status
0 Foundation DONE
1 2-3w PoC AI STARTING
2 2w Ingestion QUEUED
3 2w RAG QUEUED
4 1-2w Functions QUEUED
5 2-3w iOS/Web QUEUED
6 1w Privacy QUEUED
7 1w Performance QUEUED
8 2w Testing QUEUED
9 2w Beta QUEUED
10 Production QUEUED

🚀 Phase 1 Checklist (Next 2-3 Weeks)

Week 1: Model Setup

Week 2: Android Native

Week 3: Flutter Bridge


🛠️ Tech Stack

Component Tech Size
Model Gemma 1B int4 <500MB
Inference LiteRT -
RAG AI Edge RAG -
Functions AI Edge FC -
OCR ML Kit -
Storage SQLCipher -
UI Flutter -

📁 Project Structure

airo_super_app/
├── app/                          # Main Flutter app
│   ├── lib/src/
│   │   ├── features/
│   │   │   ├── auth/            # Authentication
│   │   │   ├── ai/              # AI chat interface
│   │   │   ├── documents/       # File upload
│   │   │   ├── results/         # Display results
│   │   │   ├── notifications/   # Schedule reminders
│   │   │   └── payments/        # Bill splitting
│   │   └── core/                # Shared utilities
│   ├── android/
│   │   └── app/src/main/kotlin/com/airo/superapp/
│   │       └── ai/              # Native AI layer
│   ├── ios/
│   │   └── Runner/              # iOS native layer
│   └── web/                      # Web assets
├── packages/
│   ├── airo/                     # Airo package
│   ├── airomoney/               # AiroMoney package
│   └── ai_edge_bridge/          # Platform channel plugin
└── docs/
    ├── PRODUCT_STRATEGY.md
    ├── TECHNICAL_ARCHITECTURE.md
    ├── ENGINEERING_CHECKLIST.md
    └── EXECUTIVE_SUMMARY.md

🔑 Key Files to Know

File Purpose
app/pubspec.yaml Flutter dependencies
app/android/app/build.gradle.kts Android config + AI Edge SDK
app/lib/main.dart App entry point
app/lib/src/features/ai/screens/chat_screen.dart Chat UI
packages/ai_edge_bridge/ Platform channel plugin
app/android/app/src/main/kotlin/com/airo/superapp/ai/ Android native AI

🔄 Data Flow: Bill Processing

1. User uploads PDF
   ↓
2. PDF text extraction (text layer or OCR)
   ↓
3. Rule-based field extraction (amounts, dates, items)
   ↓
4. Chunking + embedding (RAG context)
   ↓
5. LLM inference with context
   ↓
6. Function calling: split_bill()
   ↓
7. Compute shares, create payment requests
   ↓
8. Store in encrypted DB
   ↓
9. Display results in Flutter UI

📱 Platform Channels

Android Method Channel: com.airo.ai_edge_bridge

Methods:


🎯 Function Schemas

fill_form

{
  "name": "fill_form",
  "parameters": {
    "name": "string",
    "dob": "date",
    "weight_kg": "number",
    "height_cm": "number",
    "diet_plan": [{"day": "int", "meals": ["string"], "times": ["string"]}]
  }
}

schedule_notifications

{
  "name": "schedule_notifications",
  "parameters": {
    "plan_id": "string",
    "start_date": "date",
    "recurrence": "daily|weekly|custom",
    "times": ["HH:MM"]
  }
}

split_bill

{
  "name": "split_bill",
  "parameters": {
    "bill_id": "string",
    "participants": [{"user_id": "string", "share_pct": "number"}],
    "items": [{"name": "string", "price": "number", "assigned_to": ["string"]}]
  }
}

🔐 Privacy & Security


📊 Testing Strategy

Dataset:

Metrics:


🚨 Common Issues & Fixes

Issue Fix
Model too slow Use GPU delegate, streaming tokens
OOM on device Smaller model, lazy loading
Function hallucination Strict schema, human confirmation
OCR accuracy low Combine with rule-based extraction
Network required All ops work offline

📚 Documentation


🔗 External Resources


👥 Team Roles

Role Responsibility
Product Manager Vision, roadmap, success metrics
CTO Architecture, tech decisions, performance
Android Lead Native AI layer, platform channels
iOS Lead Model conversion, Swift implementation
Web Lead LiteRT Web, WASM, JavaScript
Flutter Lead UI, state management, integration
ML Engineer Model selection, quantization, evaluation

Last Updated: 2025-10-30
Version: 1.0